Formeln und Funktionen-Hilfe
- Willkommen
- Einführung in Formeln und Funktionen
-
- AUFGELZINS
- AUFGELZINSF
- DURATION
- MDURATION
- ZINSTERMTAGVA
- ZINSTERMTAGE
- ZINSTERMTAGNZ
- ZINSTERMZAHL
- KUMZINSZ
- KUMKAPITAL
- WÄHRUNG
- WÄHRUNGSCODE
- WÄHRUNGSKONVERTER
- WÄHRUNGH
- GDA2
- GDA
- DISAGIO
- EFFEKTIV
- ZW
- ZINSSATZ
- ZINSZ
- IKV
- ISPMT
- QIKV
- NOMINAL
- ZZR
- NBW
- RMZ
- KAPZ
- KURS
- KURSDISAGIO
- KURSFÄLLIG
- BW
- ZINS
- AUSZAHLUNG
- LIA
- AKTIEN
- AKTIENH
- DIA
- VDB
- RENDITE
- RENDITEDIS
- RENDITEFÄLL
-
- ABS
- OBERGRENZE
- KOMBINATIONEN
- GERADE
- EXP
- FAKULTÄT
- ZWEIFAKULTÄT
- UNTERGRENZE
- GGT
- GANZZAHL
- KGV
- LN
- LOG
- LOG10
- REST
- VRUNDEN
- POLYNOMIAL
- UNGERADE
- PI
- POLYNOM
- POTENZ
- PRODUKT
- QUOTIENT
- ZUFALLSZAHL
- ZUFALLSBEREICH
- RÖMISCH
- RUNDEN
- ABRUNDEN
- AUFRUNDEN
- POTENZREIHE
- VORZEICHEN
- WURZEL
- WURZELPI
- SUMME
- SUMMEWENN
- SUMMEWENNS
- SUMMENPRODUKT
- QUADRATESUMME
- SUMMEX2MY2
- SUMMEX2PY2
- SUMMEXMY2
- KÜRZEN
-
- MITTELABW
- MITTELWERT
- MITTELWERTA
- MITTELWERTWENN
- MITTELWERTWENNS
- BETAVERT
- BETAINV
- BINOMVERT
- CHIVERT
- CHIINV
- CHITEST
- KONFIDENZ
- KORREL
- ANZAHL
- ANZAHL2
- ANZAHLLEEREZELLEN
- ZÄHLENWENN
- ZÄHLENWENNS
- KOVAR
- KRITBINOM
- SUMQUADABW
- EXPONVERT
- FVERT
- FINV
- PROGNOSE
- HÄUFIGKEIT
- GAMMAVERT
- GAMMAINV
- GAMMALN
- GEOMITTEL
- HARMITTEL
- ACHSENABSCHNITT
- NGRÖSSTE
- RGP
- LOGINV
- LOGNORMVERT
- MAX
- MAXA
- MEDIAN
- MIN
- MINA
- MODALWERT
- NEGBINOMVERT
- NORMVERT
- NORMINV
- STANDNORMVERT
- STANDNORMINV
- QUANTIL
- QUANTILSRANG
- VARIATIONEN
- POISSON
- WAHRSCHBEREICH
- QUARTILE
- RANG
- STEIGUNG
- NKLEINSTE
- STANDARDISIERUNG
- STABW
- STABWA
- STABWN
- STABWNA
- TVERT
- TINV
- TTEST
- VARIANZ
- VARIANZA
- VARIANZEN
- VARIANZENA
- WEIBULL
- GTEST
KOVAR
Die Funktion KOVAR ermittelt die Kovarianz (ein Maß für den Zusammenhang) zwischen zwei Gruppen numerischer Werte.
KOVAR(Stichprobe-1-Werte; Stichprobe-2-Werte)
Stichprobe-1-Werte: Die Sammlung mit den Werten der ersten Stichprobe.
Stichprobe-2-Werte: Dies ist die Sammlung mit den Werten der zweiten Stichprobe.
Hinweise
Die beiden Sammlungen müssen gleich groß sein.
In den Sammlungen enthaltene Zeichenfolgenwerte oder Boolesche Werte werden ignoriert.
Sind die beiden Sammlungen identisch, entspricht die Kovarianz der Populationsvarianz.
Beispiel |
---|
Annahme: Ein Hauseigentümer in den USA hat sich die Preise (in Dollar), die er für Heizöllieferungen bezahlt hat, und die Temperatureinstellung auf dem Heizungsthermostat (in Fahrenheit) während der zugehörigen Heizperiode notiert. Beispieltabelle: |
A | B | |
---|---|---|
1 | Preis | Thermostat |
2 | 4,50 | 64 |
3 | 4,20 | 65 |
4 | 3,91 | 65 |
5 | 3,22 | 66 |
6 | 3,09 | 66 |
7 | 3,15 | 66 |
8 | 2,98 | 68 |
9 | 2,56 | 70 |
10 | 2,60 | 70 |
11 | 2,20 | 72 |
=KOVAR(A2:A11;B2:B11) ergibt einen Näherungswert von -1,6202, was eine enge Korrelation nahelegt (die Temperatur wird umso niedriger eingestellt, je stärker der Preis steigt). Die Kovarianz ist ein Maß dafür, wie eng die Wechselbeziehung zwischen zwei Variablen ist (in diesem Fall der Preis für das Heizöl und die Einstellung am Thermostat). |
Beispiele – Umfrageergebnisse |
---|
Ein Beispiel dafür, wie diese und andere statistische Funktionen auf die Ergebnisse einer Umfrage angewendet werden können, findest du in der Beschreibung der Funktion ZÄHLENWENN. |