Formeln und Funktionen-Hilfe
- Willkommen
- Einführung in Formeln und Funktionen
-
- AUFGELZINS
- AUFGELZINSF
- DURATION
- MDURATION
- ZINSTERMTAGVA
- ZINSTERMTAGE
- ZINSTERMTAGNZ
- ZINSTERMZAHL
- KUMZINSZ
- KUMKAPITAL
- WÄHRUNG
- WÄHRUNGSCODE
- WÄHRUNGSKONVERTER
- WÄHRUNGH
- GDA2
- GDA
- DISAGIO
- EFFEKTIV
- ZW
- ZINSSATZ
- ZINSZ
- IKV
- ISPMT
- QIKV
- NOMINAL
- ZZR
- NBW
- RMZ
- KAPZ
- KURS
- KURSDISAGIO
- KURSFÄLLIG
- BW
- ZINS
- AUSZAHLUNG
- LIA
- AKTIEN
- AKTIENH
- DIA
- VDB
- RENDITE
- RENDITEDIS
- RENDITEFÄLL
-
- ABS
- OBERGRENZE
- KOMBINATIONEN
- GERADE
- EXP
- FAKULTÄT
- ZWEIFAKULTÄT
- UNTERGRENZE
- GGT
- GANZZAHL
- KGV
- LN
- LOG
- LOG10
- REST
- VRUNDEN
- POLYNOMIAL
- UNGERADE
- PI
- POLYNOM
- POTENZ
- PRODUKT
- QUOTIENT
- ZUFALLSZAHL
- ZUFALLSBEREICH
- RÖMISCH
- RUNDEN
- ABRUNDEN
- AUFRUNDEN
- POTENZREIHE
- VORZEICHEN
- WURZEL
- WURZELPI
- SUMME
- SUMMEWENN
- SUMMEWENNS
- SUMMENPRODUKT
- QUADRATESUMME
- SUMMEX2MY2
- SUMMEX2PY2
- SUMMEXMY2
- KÜRZEN
-
- MITTELABW
- MITTELWERT
- MITTELWERTA
- MITTELWERTWENN
- MITTELWERTWENNS
- BETAVERT
- BETAINV
- BINOMVERT
- CHIVERT
- CHIINV
- CHITEST
- KONFIDENZ
- KORREL
- ANZAHL
- ANZAHL2
- ANZAHLLEEREZELLEN
- ZÄHLENWENN
- ZÄHLENWENNS
- KOVAR
- KRITBINOM
- SUMQUADABW
- EXPONVERT
- FVERT
- FINV
- PROGNOSE
- HÄUFIGKEIT
- GAMMAVERT
- GAMMAINV
- GAMMALN
- GEOMITTEL
- HARMITTEL
- ACHSENABSCHNITT
- NGRÖSSTE
- RGP
- LOGINV
- LOGNORMVERT
- MAX
- MAXA
- MEDIAN
- MIN
- MINA
- MODALWERT
- NEGBINOMVERT
- NORMVERT
- NORMINV
- STANDNORMVERT
- STANDNORMINV
- QUANTIL
- QUANTILSRANG
- VARIATIONEN
- POISSON
- WAHRSCHBEREICH
- QUARTILE
- RANG
- STEIGUNG
- NKLEINSTE
- STANDARDISIERUNG
- STABW
- STABWA
- STABWN
- STABWNA
- TVERT
- TINV
- TTEST
- VARIANZ
- VARIANZA
- VARIANZEN
- VARIANZENA
- WEIBULL
- GTEST
NORMINV
Die Funktion NORMINV berechnet die Umkehrung der kumulativen Normalverteilung. Alle Argumente sind numerische Werte.
NORMINV(Wahrscheinlichkeit; Mittelwert; Standardabweichung)
Wahrscheinlichkeit: Ein numerischer Wert, der die der Verteilung zugeordnete Wahrscheinlichkeit darstellt. Das Argument Wahrscheinlichkeit muss größer als 0 und kleiner als 1 sein.
Mittelwert: Ein Wert, der für die bekannte mittlere Häufigkeit (arithmetisches Mittel) steht, in der Ereignisse auftreten.
Standardabweichung: Die Standardabweichung der Population. Das Argument Standardabweichung muss größer als 0 (Null) sein.
Hinweise
Bei der Festlegung Mittelwert = 0 und Standardabweichung = 1 ergibt die Funktion NORMINV denselben Wert wie die Umkehrung der kumulativen Standardnormalverteilung, die durch die Funktion STANDNORMINV berechnet wird.
Beispiel |
---|
=NORMINV(0,89; 15; 2,5) liefert den Ergebniswert 18,0663203000915. |