Aide sur les formules et les fonctions
- Bienvenue
-
- Présentation des formules
- Ajouter et modifier des formules
- Vérifier les erreurs de formule et les meilleures pratiques
- Copier ou déplacer des formules
- Faire référence à des cellules dans des formules
- Utiliser des opérateurs de chaîne et des caractères génériques
- Conseils pour l’utilisation de guillemets anglais dans les formules
-
- Présentation des fonctions
- Liste des fonctions par catégorie
- Types d’arguments et de valeurs
- Utiliser des opérateurs de chaîne et des caractères génériques
- Conseils pour la sélection des fonctions financières
- Fonctions permettant d’arrondir des valeurs
- Fonctions acceptant des conditions et des caractères génériques en tant qu’arguments
-
- INTERET.ACC
- INTERET.ACC.MAT
- DUREE.OBLIGATION
- DUREE.M.OBLIGATION
- NB.JOURS.COUPON.PREC
- NB.JOURS.COUPON
- NB.JOURS.COUPON.SUIV
- NB.COUPONS
- CUMUL.INTER
- CUMUL.PRINCPER
- ECHDEVISE
- CODEDEVISE
- CONVERTIRDEVISE
- ECHDEVISEH
- DB
- DDB
- TAUX.ESCOMPTE
- TAUX.EFFECTIF
- VC
- TAUX.INTERET
- INTPER
- TRI
- ISPMT
- TRIM
- TAUX.NOMINAL
- NPM
- VAN
- VPM
- PRINCPER
- PRIX.TITRE
- VALEUR.ENCAISSEMENT
- PRIX.TITRE.ECHEANCE
- VA
- TAUX
- VALEUR.NOMINALE
- AMORLIN
- ACTION
- ACTIONH
- SYD
- VDB
- TRI.PAIEMENTS
- VAN.PAIEMENTS
- RENDEMENT.TITRE
- RENDEMENT.SIMPLE
- RENDEMENT.TITRE.ECHEANCE
-
- ABS
- PLAFOND
- COMBIN
- PAIR
- EXP
- FACT
- FACTDOUBLE
- PLANCHER
- PGCD
- ENT
- PPCM
- LN
- LOG
- LOG10
- MOD
- ARRONDI.AU.MULTIPLE
- MULTINOMIALE
- IMPAIR
- PI
- POLYNOME
- PUISSANCE
- PRODUIT
- QUOTIENT
- ALEA
- ALEA.ENTRE.BORNES
- ROMAIN
- ARRONDI
- ARRONDI.INF
- ARRONDI.SUP
- SOMMES.SERIE
- SIGNE
- RACINE
- RACINE.PI
- SOUS.TOTAL
- SOMME
- SOMME.SI
- SOMME.SI.ENS
- SOMMEPROD
- SOMME.CARRES
- SOMME.X2MY2
- SOMME.X2PY2
- SOMME.XMY2
- TRONQUE
-
- ECART.MOYEN
- MOYENNE
- MOYENNEA
- MOYENNE.SI
- MOYENNE.SI.ENS
- LOI.BETA
- BETA.INVERSE
- LOI.BINOMIALE
- LOI.KHIDEUX
- KHIDEUX.INVERSE
- TEST.KHIDEUX
- INTERVALLE.CONFIANCE
- COEFFICIENT.CORRELATION
- NB
- NBVAL
- NB.VIDE
- NB.SI
- NB.SI.ENS
- COVARIANCE
- CRITERE.LOI.BINOMIALE
- SOMME.CARRES.ECARTS
- LOI.EXPONENTIELLE
- LOI.F
- INVERSE.LOI.F
- PREVISION
- FRÉQUENCE
- LOI.GAMMA
- LOI.GAMMA.INVERSE
- LNGAMMA
- MOYENNE.GEOMETRIQUE
- MOYENNE.HARMONIQUE
- ORDONNEE.ORIGINE
- GRANDE.VALEUR
- DROITEREG
- LOI.LOGNORMALE.INVERSE
- LOI.LOGNORMALE
- MAX
- MAXA
- MAX.SI.ENS
- MEDIANE
- MIN
- MINA
- MIN.SI.ENS
- MODE
- LOI.BINOMIALE.NEG
- LOI.NORMALE
- LOI.NORMALE.INVERSE
- LOI.NORMALE.STANDARD
- LOI.NORMALE.STANDARD.INVERSE
- CENTILE
- RANG.POURCENTAGE
- PERMUTATION
- LOI.POISSON
- PROBABILITE
- QUARTILE
- RANG
- PENTE
- PETITE.VALEUR
- CENTREE.REDUITE
- ECARTYPE
- ECARTYPEM
- ECARTYPEP
- STDEVPA
- LOI.STUDENT
- LOI.STUDENT.INVERSE
- TEST.STUDENT
- VAR
- VARA
- VAR.P
- VARPA
- LOI.WEIBULL
- TEST.Z
- Copyright
COEFFICIENT.CORRELATION
La fonction COEFFICIENT.CORRELATION renvoie le coefficient de corrélation entre deux ensembles à l’aide de l’analyse de régression linéaire.
COEFFICIENT.CORRELATION(valeurs-y; valeurs-x)
valeurs-y : La collection comprenant les valeurs y (indépendantes). Chaque valeur peut correspondre à une valeur numérique, une valeur de date/heure ou une valeur de durée. Toutes les valeurs doivent avoir le même type de valeur.
valeurs-x : La collection comprenant valeurs x (indépendantes). Chaque valeur peut correspondre à une valeur numérique, une valeur de date/heure ou une valeur de durée. Toutes les valeurs doivent avoir le même type de valeur.
Notes
Les deux collections doivent présenter les mêmes dimensions.
Si ces collections comprennent des valeurs de chaîne ou des valeurs booléennes, celles-ci sont ignorées.
Exemple |
---|
Supposons que vous avez noté toutes les variations périodiques du prix des livraisons de mazout de chauffage, ainsi que la température moyenne réglée sur votre thermostat pour chaque période associée à un prix. Prenons le tableau suivant : |
A | B | |
---|---|---|
1 | Prix | Réglage |
2 | 4,5 | 64 |
3 | 65 | 65 |
4 | 3,91 | 65 |
5 | 3,22 | 66 |
6 | 3,09 | 66 |
7 | 3,15 | 66 |
8 | 2,98 | 68 |
9 | 2,56 | 70 |
10 | 2,6 | 70 |
11 | 2,2 | 72 |
=COEFFICIENT.CORRELATION(B2:B11; A2:A11) renvoie environ -0,907 629 573 252 938, ce qui indique une corrélation étroite (à mesure que les prix montent, le thermostat est baissé). Une corrélation est une mesure de la modification simultanée de près de deux variables (dans cet exemple, le prix du mazout de chauffage et le réglage du thermostat). Une corrélation de -1 (pente décroissante) ou de 1 (pente croissante) indique une corrélation parfaite. Une corrélation égale à 0 indique qu’il n’existe aucune corrélation entre les ensembles de données. |
Exemple : résultats d’un sondage |
---|
Pour voir un exemple de cela et de nombreuses autres fonctions statistiques appliquées aux résultats d’un sondage, consultez la fonction NB.SI. |