STDEVA
Функція STDEVA повертає стандартне відхилення (міру дисперсії) набору будь-яких значень на основі їхньої дисперсної (без зсуву) вибірки.
STDEVA(значення; значення…)
значення: окреме значення чи збірник. Всі значення мають бути того самого типу (окрім значень рядка і логічних значень, що можуть бути долучені до числових значень). Потрібні принаймні 2 значення. Значення рядка можна включити у клітинку, на яку відбувається посилання, проте його не можна ввести безпосередньо як аргумент цієї функції.
значення…: можна додати одне або кілька додаткових значень чи збірників значень.
Примітки
Функцію STDEVA доречно використовувати, коли вказані значення представляють лише вибірку більшої сукупності. Якщо значення, які ви аналізуєте, представляють повне зібрання або сукупність, використовуйте функцію STDEVPA.
Функція призначає значення 0 для будь-якого значення рядка, 0 для логічного значення FALSE, і 1 для логічного значення TRUE, та включає їх в обчислення, якщо всі інші значення є числами. Якщо включено значення дати/часу чи значення тривалості, функція повертає помилку. Пусті клітинки ігноруються.
Стандартне відхилення — це корінь квадратний дисперсії, яку видала функція VARA.
Приклад |
---|
Припустимо, ви встановили датчик температури в Купертіно, штат Каліфорнія. Датчик щодня записує найвищі та найнижчі показники температури (у градусах за шкалою Фаренгейта). Дані за перші кілька днів липня показані в наведеній нижче таблиці і використовуються як вибірка для сукупності найвищих і найнижчих показників температури (зауважте, що це лише приклад, який не є надійним з точки зору статистичного аналізу). П’ятого червня датчик вийшов із ладу, тому дані в таблиці мають значення «немає» або «недоступно». |
A | B | C | |
---|---|---|---|
1 | Дата | Макс. | Мін. |
2 | 01.07.2010 | 58 | 58 |
3 | 02.07.2010 | 84 | 61 |
4 | 03.07.2010 | 82 | 59 |
5 | 04.07.2010 | 78 | 55 |
6 | 05.07.2010 | немає | немає |
7 | 06.07.2010 | 81 | 57 |
8 | 07.07.2010 | 93 | 67 |
=STDEVA(В2:В8) повертає приблизно 31,8067078879073 — дисперсію (стандартне відхилення — це міра дисперсії), обчислену функцією STDEVA, вибірки найвищих показників температури. Якщо у вас є великий обсяг даних, який не вдалося оцінити візуально, або ви хочете автоматизувати процес перевірки відсутніх значень, можна порівняти результат =STDEV(В2:В8), яка повертає приблизно 11,6218185610801, і STDEVA, яка повертає приблизно 31,8067078879073. Якщо вони не збігаються (як в цьому прикладі), це означає, що набір даних містить текстові (наприклад «немає») або одне чи кілька логічних значень (TRUE або FALSE). |