Formeln und Funktionen-Hilfe
- Willkommen
-
- Formeln – Übersicht
- Hinzufügen und Bearbeiten von Formeln
- Prüfen von Fehlern in Formeln und bewährte Methoden zur Fehlervermeidung
- Kopieren oder Bewegen von Formeln
- In Formeln auf Zellen verweisen
- Verwenden von Zeichenfolgenoperatoren und Platzhaltern
- Tipps zur Verwendung von doppelten Anführungszeichen in Formeln
-
- Funktionen – Übersicht
- Liste der Funktionen nach Kategorie
- Argument- und Wertetypen
- Verwenden von Zeichenfolgenoperatoren und Platzhaltern
- Tipps für das Auswählen finanzmathematischer Funktionen
- Funktionen zum Runden von Werten
- Funktionen, die Bedingungen und Platzhalterzeichen als Argumente zulassen
-
- AUFGELZINS
- AUFGELZINSF
- DURATION
- MDURATION
- ZINSTERMTAGVA
- ZINSTERMTAGE
- ZINSTERMTAGNZ
- ZINSTERMZAHL
- KUMZINSZ
- KUMKAPITAL
- WÄHRUNG
- WÄHRUNGSCODE
- WÄHRUNGSKONVERTER
- WÄHRUNGH
- GDA2
- GDA
- DISAGIO
- EFFEKTIV
- ZW
- ZINSSATZ
- ZINSZ
- IKV
- ISPMT
- QIKV
- NOMINAL
- ZZR
- NBW
- RMZ
- KAPZ
- KURS
- KURSDISAGIO
- KURSFÄLLIG
- BW
- ZINS
- AUSZAHLUNG
- LIA
- AKTIEN
- AKTIENH
- DIA
- VDB
- XIKV
- XNBW
- RENDITE
- RENDITEDIS
- RENDITEFÄLL
-
- ABS
- OBERGRENZE
- KOMBINATIONEN
- GERADE
- EXP
- FAKULTÄT
- ZWEIFAKULTÄT
- UNTERGRENZE
- GGT
- GANZZAHL
- KGV
- LN
- LOG
- LOG10
- REST
- VRUNDEN
- POLYNOMIAL
- UNGERADE
- PI
- POLYNOM
- POTENZ
- PRODUKT
- QUOTIENT
- ZUFALLSZAHL
- ZUFALLSBEREICH
- RÖMISCH
- RUNDEN
- ABRUNDEN
- AUFRUNDEN
- POTENZREIHE
- VORZEICHEN
- WURZEL
- WURZELPI
- ZWISCHENSUMME
- SUMME
- SUMMEWENN
- SUMMEWENNS
- SUMMENPRODUKT
- QUADRATESUMME
- SUMMEX2MY2
- SUMMEX2PY2
- SUMMEXMY2
- KÜRZEN
-
- MITTELABW
- MITTELWERT
- MITTELWERTA
- MITTELWERTWENN
- MITTELWERTWENNS
- BETAVERT
- BETAINV
- BINOMVERT
- CHIVERT
- CHIINV
- CHITEST
- KONFIDENZ
- KORREL
- ANZAHL
- ANZAHL2
- ANZAHLLEEREZELLEN
- ZÄHLENWENN
- ZÄHLENWENNS
- KOVAR
- KRITBINOM
- SUMQUADABW
- EXPONVERT
- FVERT
- FINV
- PROGNOSE
- HÄUFIGKEIT
- GAMMAVERT
- GAMMAINV
- GAMMALN
- GEOMITTEL
- HARMITTEL
- ACHSENABSCHNITT
- NGRÖSSTE
- RGP
- LOGINV
- LOGNORMVERT
- MAX
- MAXA
- MAXWENNS
- MEDIAN
- MIN
- MINA
- MINWENNS
- MODALWERT
- NEGBINOMVERT
- NORMVERT
- NORMINV
- STANDNORMVERT
- STANDNORMINV
- QUANTIL
- QUANTILSRANG
- VARIATIONEN
- POISSON
- WAHRSCHBEREICH
- QUARTILE
- RANG
- STEIGUNG
- NKLEINSTE
- STANDARDISIERUNG
- STABW
- STABWA
- STABWN
- STABWNA
- TVERT
- TINV
- TTEST
- VARIANZ
- VARIANZA
- VARIANZEN
- VARIANZENA
- WEIBULL
- GTEST
- Copyright
POLYNOM
Die Funktion POLYNOM berechnet ein Polynom an einem bestimmten Punkt.
POLYNOM(x-Wert; Koeffizienten)
x-Wert: Der Ausgangswert für die Potenzreihe. Das Argument x-Wert ist ein numerischer Wert.
Koeffizienten: Die Koeffizienten, mit denen die aufeinander folgenden Potenzen des x-Werts multipliziert werden. Die Anzahl der Koeffizienten bestimmt die Anzahl der Terme in der Potenzreihe. Das Argument Koeffizienten ist eine Sammlung, die numerische Werte enthält.
Hinweise
Terme höherer Ordnung werden zuerst dargestellt. Die Koeffizienten (ai) stehen für aufeinander folgende Potenzen des x-Werts. In der folgenden Formel steht „x“ für den x-Wert. Die von der Funktion POLYNOM verwendete Formel lautet wie folgt: a0 xn + a1 x(n-1) + a2 x(n-2) + ... + an
Die Funktion POLYNOM erlaubt es nicht, einen beliebigen Ausgangswert und beliebige Inkremente für die Exponenten zu verwenden. Wird eine dieser Möglichkeiten benötigt, empfiehlt sich die Verwendung der Funktion POTENZREIHE.
Die Exponenten sind nichtnegative Ganzzahlen.
Beispiele |
---|
=POLYNOM(2; 9) liefert den Ergebniswert 9. =POLYNOM(2; 1) liefert den Ergebniswert 1. |