Hjelp for formler og funksjoner
- Velkommen
- Introduksjon til formler og funksjoner
-
- PÅLØPT.PERIODISK.RENTE
- PÅLØPT.FORFALLSRENTE
- OBLIGASJONSVARIGHET
- OBLIGASJONSMVARIGHET
- OBLIG.DAGER.FF
- OBLIG.DAGER
- OBLIG.DAGER.NF
- OBLIG.ANTALL
- SAMLET.RENTE
- SAMLET.HOVEDSTOL
- MYNTENHET
- VALUTAKODE
- KONVERTERVALUTA
- MYNTENHETH
- DAVSKR
- DEGRAVS
- DISKONTERT
- EFFEKTIV.RENTE
- SLUTTVERDI
- RENTESATS
- RAVDRAG
- IR
- ER.AVDRAG
- MODIR
- NOMINELL
- PERIODER
- NNV
- AVDRAG
- AMORT
- PRIS
- PRIS.DISKONTERT
- PRIS.FORFALL
- NÅVERDI
- RENTE
- MOTTATT.AVKAST
- LINAVS
- AKSJE
- AKSJEH
- ÅRSAVS
- VERDIAVS
- XIR
- XNNV
- AVKAST
- AVKAST.DISKONTERT
- AVKAST.FORFALL
-
- ABS
- AVRUND.GJELDENDE.MULTIPLUM
- KOMBINASJON
- AVRUND.TIL.PARTALL
- EKSP
- FAKULTET
- DOBBELFAKT
- AVRUND.GJELDENDE.MULTIPLUM.NED
- SFF
- HELTALL
- MFM
- LN
- LOG
- LOG10
- REST
- MRUND
- MULTINOMINELL
- AVRUND.TIL.ODDETALL
- PI
- POLYNOMISK
- OPPHØYD.I
- PRODUKT
- KVOTIENT
- TILFELDIG
- TILFELDIGMELLOM
- ROMERTALL
- AVRUND
- AVRUND.NED
- AVRUND.OPP
- SUMMER.REKKE
- FORTEGN
- ROT
- ROTPI
- DELSUM
- SUMMER
- SUMMERHVIS
- SUMMER.HVIS.SETT
- SUMMERPRODUKT
- SUMMERKVADRAT
- SUMMERX2MY2
- SUMMERX2PY2
- SUMMERXMY2
- AVKORT
-
- GJENNOMSNITTSAVVIK
- GJENNOMSNITT
- GJENNOMSNITTA
- GJENNOMSNITTHVIS
- GJENNOMSNITT.HVIS.SETT
- BETA.FORDELING
- INVERS.BETA.FORDELING
- BINOM.FORDELING
- KJI.FORDELING
- INVERS.KJI.FORDELING
- KJI.TEST
- KONFIDENS
- KORRELASJON
- ANTALL
- ANTALLA
- TELLBLANKE
- ANTALL.HVIS
- ANTALL.HVIS.SETT
- KOVARIANS
- GRENSE.BINOM
- AVVIK.KVADRERT
- EKSP.FORDELING
- FFORDELING
- FFORDELING.INVERS
- PROGNOSE
- FREKVENS
- GAMMAFORDELING
- GAMMAINV
- GAMMALN
- GJENNOMSNITT.GEOMETRISK
- GJENNOMSNITT.HARMONISK
- SKJÆRINGSPUNKT
- N.STØRST
- RETTLINJE
- LOGINV
- LOGNORMFORD
- MAKS
- MAKSA
- MAKS.HVIS.SETT
- MEDIAN
- MIN
- MINA
- MIN.HVIS.SETT
- MODUS
- NEGBINOM.FORDELING
- NORMALFORDELING
- NORMINV
- NORMSFORDELING
- NORMSINV
- PERSENTIL
- PROSENTDEL
- PERMUTER
- POISSON
- SANNSYNLIG
- KVARTIL
- RANG
- STIGNINGSTALL
- N.MINST
- NORMALISER
- STDAV
- STDAVVIKA
- STDAVP
- STDAVVIKPA
- TFORDELING
- TINV
- TTEST
- VARIANS
- VARIANSA
- VARIANSP
- VARIANSPA
- WEIBULL.FORDELING
- ZTEST
SKJÆRINGSPUNKT
SKJÆRINGSPUNKT-funksjonen returnerer y-skjæringslinjen til trendlinjen for samlingen ved hjelp av lineær regresjonsanalyse.
SKJÆRINGSPUNKT(y-verdier; x-tall)
y-verdier: Samlingen som inneholder y-verdiene (avhengige). y-verdier må inneholde tallverdier, dato/tid-verdier eller varighetsverdier. Alle verdier må være av samme verditype.
x-tall: Samlingen som inneholder x-verdiene (uavhengige). x-tall må inneholde tallverdier.
Notater
De to samlingene må være av samme størrelse.
Hvis du vil finne stigningstallet til trendlinjen, bruker du STIGNINGSTALL-funksjonen.
Eksempel |
---|
Anta at du har registrert de periodiske endringene i prisen du har betalt for hver leveranse av fyringsolje, samt den gjennomsnittlige temperaturinnstillingen på termostaten i perioden som den spesifiserte prisen gjaldt. Gitt følgende tabell: |
A | B | |
---|---|---|
1 | Pris | Innstilling |
2 | 4,50 | 64 |
3 | 4,20 | 65 |
4 | 3,91 | 65 |
5 | 3,22 | 66 |
6 | 3,09 | 66 |
7 | 3,15 | 66 |
8 | 2,98 | 68 |
9 | 2,56 | 70 |
10 | 2,60 | 70 |
11 | 2,20 | 72 |
=SKJÆRINGSPUNKT(B2:B11; A2:A11) resulterer i ca. 78, over den høyeste hypotetiske verdien, ettersom trendlinjen heller nedover (termostaten ble satt ned når prisene steg). |