Hjelp for formler og funksjoner
- Velkommen
- Introduksjon til formler og funksjoner
-
- PÅLØPT.PERIODISK.RENTE
- PÅLØPT.FORFALLSRENTE
- OBLIGASJONSVARIGHET
- OBLIGASJONSMVARIGHET
- OBLIG.DAGER.FF
- OBLIG.DAGER
- OBLIG.DAGER.NF
- OBLIG.ANTALL
- SAMLET.RENTE
- SAMLET.HOVEDSTOL
- MYNTENHET
- VALUTAKODE
- KONVERTERVALUTA
- MYNTENHETH
- DAVSKR
- DEGRAVS
- DISKONTERT
- EFFEKTIV.RENTE
- SLUTTVERDI
- RENTESATS
- RAVDRAG
- IR
- ER.AVDRAG
- MODIR
- NOMINELL
- PERIODER
- NNV
- AVDRAG
- AMORT
- PRIS
- PRIS.DISKONTERT
- PRIS.FORFALL
- NÅVERDI
- RENTE
- MOTTATT.AVKAST
- LINAVS
- AKSJE
- AKSJEH
- ÅRSAVS
- VERDIAVS
- AVKAST
- AVKAST.DISKONTERT
- AVKAST.FORFALL
-
- ABS
- AVRUND.GJELDENDE.MULTIPLUM
- KOMBINASJON
- AVRUND.TIL.PARTALL
- EKSP
- FAKULTET
- DOBBELFAKT
- AVRUND.GJELDENDE.MULTIPLUM.NED
- SFF
- HELTALL
- MFM
- LN
- LOG
- LOG10
- REST
- MRUND
- MULTINOMINELL
- AVRUND.TIL.ODDETALL
- PI
- POLYNOMISK
- OPPHØYD.I
- PRODUKT
- KVOTIENT
- TILFELDIG
- TILFELDIGMELLOM
- ROMERTALL
- AVRUND
- AVRUND.NED
- AVRUND.OPP
- SUMMER.REKKE
- FORTEGN
- ROT
- ROTPI
- SUMMER
- SUMMERHVIS
- SUMMER.HVIS.SETT
- SUMMERPRODUKT
- SUMMERKVADRAT
- SUMMERX2MY2
- SUMMERX2PY2
- SUMMERXMY2
- AVKORT
-
- GJENNOMSNITTSAVVIK
- GJENNOMSNITT
- GJENNOMSNITTA
- GJENNOMSNITTHVIS
- GJENNOMSNITTHVISFLERE
- BETA.FORDELING
- INVERS.BETA.FORDELING
- BINOM.FORDELING
- KJI.FORDELING
- INVERS.KJI.FORDELING
- KJI.TEST
- KONFIDENS
- KORRELASJON
- ANTALL
- ANTALLA
- TELLBLANKE
- ANTALL.HVIS
- ANTALL.HVIS.SETT
- KOVARIANS
- GRENSE.BINOM
- AVVIK.KVADRERT
- EKSP.FORDELING
- FFORDELING
- FFORDELING.INVERS
- PROGNOSE
- FREKVENS
- GAMMAFORDELING
- GAMMAINV
- GAMMALN
- GJENNOMSNITT.GEOMETRISK
- GJENNOMSNITT.HARMONISK
- SKJÆRINGSPUNKT
- N.STØRST
- RETTLINJE
- LOGINV
- LOGNORMFORD
- MAKS
- MAKSA
- MEDIAN
- MIN
- MINA
- MODUS
- NEGBINOM.FORDELING
- NORMALFORDELING
- NORMINV
- NORMSFORDELING
- NORMSINV
- PERSENTIL
- PROSENTDEL
- PERMUTER
- POISSON
- SANNSYNLIG
- KVARTIL
- RANG
- STIGNINGSTALL
- N.MINST
- NORMALISER
- STDAV
- STDAVVIKA
- STDAVP
- STDAVVIKPA
- TFORDELING
- TINV
- TTEST
- VARIANS
- VARIANSA
- VARIANSP
- VARIANSPA
- WEIBULL.FORDELING
- ZTEST
KOVARIANS
KOVARIANS-funksjonen returnerer kovariansen for to sett med tallverdier.
KOVARIANS(utvalg-1-verdier; utvalg-2-verdier)
utvalg-1-verdier: Samlingen som inneholder den første samlingen med eksempelverdier.
utvalg-2-verdier: Samlingen som inneholder det andre settet med eksempelverdier.
Notater
De to samlingene må ha samme dimensjoner.
Hvis strengverdier eller boolske verdier er inkludert i samlingene, ignoreres de.
Hvis de to samlingene er identiske, er kovariansen det samme som populasjonsvariansen.
Eksempel |
---|
Anta at du har registrert de periodiske endringene i prisen du har betalt for hver leveranse av fyringsolje, samt den gjennomsnittlige temperaturinnstillingen på termostaten i perioden som den spesifiserte prisen gjaldt. Gitt følgende tabell: |
A | B | |
---|---|---|
1 | Pris | Innstilling |
2 | 4,50 | 64 |
3 | 4,20 | 65 |
4 | 3,91 | 65 |
5 | 3,22 | 66 |
6 | 3,09 | 66 |
7 | 3,15 | 66 |
8 | 2,98 | 68 |
9 | 2,56 | 70 |
10 | 2,60 | 70 |
11 | 2,20 | 72 |
=KOVARIANS(A2:A11; B2:B11) returnerer ca. -1,6202, som indikerer en nær korrelasjon (termostaten ble skrudd ned når prisene steg). Kovarians er et mål på hvor mye to variabler (i dette tilfellet prisen på fyringsolje og termostatinnstillingen) endres sammen. |
Eksempel – undersøkelsesresultater |
---|
Hvis du vil se et eksempel på dette og flere andre statistiske funksjoner benyttet på resultatene av en undersøkelse, se ANTALL.HVIS-funksjonen. |