

Crypto Officer Role Guide for FIPS 140-2 Compliance

OS X Yosemite v10.10

Contents

Dverview	3
Compliant Applications and Services	3
Compliant Platforms	5
FIPS Mode" automatic	6
IPS related files installed by the OS X Yosemite installer	6
The Power-On-Self-Test (POST) process flow	7
low to verify integrity of the CoreCrypto Kernel module	8
low to verify integrity of the CoreCrypto Module	8
low to verify integrity of the cc_fips_test tool	9
low to mitigate a crypto module integrity issue	
IPS 140-2 Validated Algorithms	11

Overview

In highly regulated industries, IT System Administrators and Crypto Officers are frequently required to ensure deployed systems are correctly using FIPS 140-2 Validated Cryptographic Modules. The two Apple Cryptographic Modules in OS X Yosemite v10.10 achieved **FIPS 140-2 Level 1 Conformance Validation** under the <u>Cryptographic Module Validation Program (CMVP)</u> – a joint American and Canadian security accreditation program for cryptographic modules.

These two modules are identified under the CMVP with the module names of: a) "Apple OS X CoreCrypto Module v5.0" and b) "Apple OS X CoreCrypto Kernel Module v5.0." The CoreCrypto Module is available to developers for Applications and Services running in User Space. The CoreCrypto Kernel Module is used only by the OS X Kernel.

Within this and other Apple documents, those modules are also referred to with the name of **"Apple FIPS Cryptographic Module v5.0."**

Apple OS X CoreCrypto Module v5.0Validation Certificate #2408http://csrc.nist.gov/groups/STM/cmvp/documents/140-1/1401val2015.htm#2408Validation Certificate #2411http://csrc.nist.gov/groups/STM/cmvp/documents/140-1/1401val2015.htm#2411Validation Certificate #2411

All Apple Validated Crypto Modules can be found under CMVP's FIPS 140-2 Vendor List here - <u>http://</u> <u>csrc.nist.gov/groups/STM/cmvp/documents/140-1/1401vend.htm</u>

This Crypto Officer Role Guide provides IT System Administrators with the necessary technical information to ensure FIPS 140-2 Compliance of OS X Yosemite v10.10 systems. This guide walks the reader through the steps to perform the initial enablement, the system's assertion of cryptographic module integrity and finally the steps necessary if module integrity requires remediation.

Compliant Applications and Services

Compliancy Requirements on Crypto Officers are not limited to the use of products containing a validated cryptographic module, but extend to their attestation that applications and services in use are FIPS 140-2 Compliant. Compliance is defined by both the use of a FIPS 140-2 validated module and the proper use of FIPS-Approved Algorithms. A cryptographic module may contain additional algorithms that are not FIPS-Approved and if used, would indicate a Non-FIPS Compliant condition. A FIPS 140-2 Level 1 Conformance Validation does not require the cryptographic module ensures applications and services only use FIPS-Approved algorithms.

Apple

A high-level, non-exhaustive list of Apple applications and services that are FIPS 140-2 Compliant on OS X Yosemite v10.10 would include the following:

Services

FileVault 2, Kerberos, Keychain Services, Software Update Services, Time Machine, VPN, and 802.1X

Applications

App Store, Apple Remote Desktop, Calendar, Contacts, Disk Utility, Messages, iTunes, Keychain Access, Mail, Notes, Preview, and Safari

Developer and Crypto Officer Resources

There are several resources available to developers providing guidance on cryptographic services and API documentation for OS X Yosemite v10.10. Developers should refer to these resources to ensure their products and services are FIPS 140-2 Compliant on OS X Yosemite v10.10.

Apple OS X CoreCrypto Module, v5.0 FIPS 140-2 Non-Proprietary Security Policy

http://csrc.nist.gov/groups/STM/cmvp/documents/140-1/140sp/140sp2408.pdf

Apple OS X CoreCrypto Kernel Module, v5.0 FIPS 140-2 Non-Proprietary Security Policy

http://csrc.nist.gov/groups/STM/cmvp/documents/140-1/140sp/140sp2411.pdf

OS X: Security certifications and validations

https://support.apple.com/en-us/HT201159

Security Overview

https://developer.apple.com/library/mac/documentation/Security/Conceptual/Security_Overview/ Security_Overview.pdf

Cryptographic Services Guide

https://developer.apple.com/library/mac/documentation/Security/Conceptual/cryptoservices/ cryptoservices.pdf

Security Transforms Programming Guide

https://developer.apple.com/library/mac/documentation/Security/Conceptual/SecTransformPG/ SecTransformPG.pdf

Certificate, Key, and Trust Services Programming Guide

https://developer.apple.com/library/mac/documentation/Security/Conceptual/CertKeyTrustProgGuide/ CertKeyTrustProgGuide.pdf

Open Source

There are additional services included with OS X that are drawn from externally maintained open source projects. Many of these projects use their own cryptographic libraries typically for the purposes of maintaining platform independence. These services are not covered by the Apple FIPS 140-2 Level 1 Conformance Validation of the CoreCrypto and CoreCrypto Kernel modules. A high-level, non-exhaustive list would include services such as: Apache, OpenLDAP, OpenSSH, and OpenSSL.

Compliant Platforms

Compliant platforms are all supported Apple systems running OS X Yosemite v10.10. During the validation process for FIPS 140-2 Conformance, the cryptographic modules are put through operational testing environments on supported platforms and noted on the issued certificate. The **CoreCrypto** and **CoreCrypto Kernel** modules were validated under the following operational testing environments:

Module:	Apple OS X CoreCrypto Module v5.0
Platforms:	Core M with OS X Yosemite v10.10 (User Space)
	Core i5 with OS X Yosemite v10.10 (User Space)
	Core i7 with OS X Yosemite v10.10 (User Space)
	Xeon with OS X Yosemite v10.10 (User Space)
Module:	Apple OS X CoreCrypto Kernel Module v5.0
Platforms:	Core M with OS X Yosemite v10.10 (Kernel Space)
	Core i5 with OS X Yosemite v10.10 (Kernel Space)
	Core i7 with OS X Yosemite v10.10 (Kernel Space)

Compliant hardware

For FIPS 140-2 Compliance, the platforms noted above articulate Apple systems which were used for operational testing of the cryptographic modules. The CoreCrypto and CoreCrypto Kernel modules on Apple systems with either the Intel Core M, Core i5, Core i7, or Xeon processor running OS X Yosemite v10.10 also take advantage of the additional processor embedded cryptographic engine. Compliant hardware are all Apple systems meeting the technical specifications to run OS X Yosemite v10.10. The Technical Specifications are noted in the Apple support article "OS X Yosemite - Technical Specifications" - http://support.apple.com/kb/SP711.

"FIPS Mode" automatic

"FIPS Mode" is enabled all the time automatically without the need for installation, administration or configuration. All instances of OS X, since the initial release of version 10.9.0, have been using the two validated cryptographic modules and performing the required kernel module and algorithm tests.

OS X Yosemite v10.10 system will perform all required tests such as the Power-On-Self-Tests (POST) for both the kernel and user space modules, integrity tests on the algorithms and module components, pairwise consistency tests, and finally the conditional self-tests on the random number generator will be performed according to the FIPS 140-2 Level 1 Conformance Validation.

FIPS related files installed by the OS X Yosemite installer

During the installation of OS X Yosemite v10.10, FIPS 140-2 related files are installed. Their location and purpose is explained here with sample data. Actual values depend on the hardware and the version of OS X Yosemite running on the hardware.

drwxr-xr-x 3 root wheel /private/var/db/FIPS Directory for FIPS Integrity Data 1 root wheel /private/var/db/FIPS/fips data -rw-r--r--HMAC SHA256 values for 64/32-bit kernel modules Sample Data: x86 64:0573480d1e07a00b4cabbafcb53be00d470e28bd2168cec1235d256f7e1bb7b7 i386:ec5ab8aa18b219c5d06d2fb6339d3c40837a0a16327f752ebbe1a76d84773a22 -rwxr-xr-x 1 root wheel /usr/libexec/cc fips test CoreCrypto (User Space) FIPS verification tool -rw-r--r--1 root wheel /usr/share/man/man1/cc fips test.1

Man page for the cc_fips_test command.

The Power-On-Self-Test (POST) process flow

- 1. Apple Mac system is physically Powered on
- 2. Operating System (OS X Yosemite v10.10) begins the bootstrap process
- 3. Operating System ensures integrity of the CoreCrypto Kernel Module
 - 3.1. Validation of the corecrypto.kext
 - 3.1.1. The kernel determines operating environment (i.e i7)
 - 3.1.2. The kernel reads a validated HMAC_SHA256 from the $\tt corecrypto.kext$
 - 3.1.3. The corecrypto.kext is launched and given the correct validated HMAC from 3.1.2
 - 3.1.4. The corecrypto.kext will generate an HMAC_SHA256 of the corecrypto.kext code and compare the result against the validated HMAC_SHA256 from 3.1.2
 - 3.1.5. If the calculated HMAC_SHA256 does not match the validated HMAC_SHA256, the system will panic and halt
 - 3.2. The Power-On-Self-Test (POST) validates the algorithms and modes3.2.1. The corecrypto.kext performs POST on algorithms and modes3.2.2. If any part of the POST fails, the system will panic and halt
- 4. Operating System ensures Integrity of CoreCrypto Module
 - 4.1. Validation of the corecrypto.dylib
 - 4.1.1. Upon user space environment setup by the kernel, launchCtl will launch the integrity test application /usr/libexec/cc_fips_test
 - 4.1.2. An HMAC_SHA256 of the user space corecrypto.dylib will be generated and compared to the HMAC_SHA256 value stored at /var/db/FIPS/fips data
 - **4.1.3.** If the calculated HMAC_SHA256 does not match the stored HMAC_SHA256, the system will panic and halt
 - 4.2. The Power-On-Self-Test (POST) validates the algorithms and modes4.2.1. The cc_fips_test performs POST on algorithms and modes4.2.2. If any part of the POST fails, the system will panic and halt
- 5. Halt upon failure of any tests
 - 5.1. If any phase or step of testing components fails, the system will log the failure and Halt/ Shutdown the Operating System immediately.
 - 5.2. The logging messages are sent to the /var/log/system.log file.

How to verify integrity of the CoreCrypto Kernel module

As noted in the POST process flow, the kernel will ensure the integrity of the CoreCrypto Kernel module and its FIPS-Approved Algorithms. If any integrity issue is found during the POST, the device will automatically log the failure and halt/shutdown the system. There is no need or capability for a Crypto Officer to independently verify the integrity of the CoreCrypto Kernel module other than rebooting the system which automatically forces the complete POST. Powering up the system into Single-User mode and viewing the /var/log/system.log file would reveal the logging from the POST as noted earlier in the process flow.

How to verify integrity of the CoreCrypto Module

The tool automatically executed during the POST to verify the integrity of the User Space CoreCrypto Module and the FIPS-Approved algorithms is called: cc_fips_test. There is no technical requirement for a Crypto Officer to ever need to run this tool, but it can be executed at any time by a user with administrative privileges.

Launch Terminal in the /Applications/Utilities folder and run the following command :

sudo /usr/libexec/cc fips test -v

The result should be:

About to call the FIPS_POST function in the corecrypto.dylib FIPS USER Space POST: Integrity test success! FIPS USER Space POST: AES ECB Test success! FIPS USER Space POST: AES CBC Test success! FIPS USER Space POST: AES XTS Test success! FIPS USER Space POST: TDES CBC Test success! FIPS USER Space POST: SHA Test success! FIPS USER Space POST: HMAC Test success! FIPS USER Space POST: RSA Test success! FIPS USER Space POST: RSA Test success! FIPS USER Space POST: ECDSA Test success! FIPS USER Space POST: DRBG Test success! FIPS USER Space POST Success! Execution of the above command without first obtaining administrative privileges will result in the system reporting the Integrity test failed.

The result would be:

About to call the FIPS_POST function in the corecrypto.dylib OSX FIPS Integrity Test: The /var/db/FIPS/fips_data file does not exist. FIPS USER Space POST: Integrity test failed! Returned from calling the FIPS_POST function in the corecrypto.dylib: result = false FIPS POST failed!

Any desire to read the man page for this command can be done by running the following command:

man cc fips test

The result would be:

NAME

cc_fips_test

SYNOPSIS

Called when the system is booted to test the FIPS user space boundary.

DESCRIPTION

The FIPS user space Power On Self Test (POST) tester. May be called after the system has booted to re-run the POST tests.

How to verify integrity of the cc_fips_test tool

The cc_fips_test tool has been digitally signed by Apple. You can verify the tool and the tool's integrity by verifying its signature with the following command.

```
codesign -dvvv /usr/libexec/cc fips test
```

The result should be similar to the following sample data, but will not match exactly to the following due to the dependency on hardware and the OS version running on that hardware.

```
Executable=/usr/libexec/cc_fips_test
Identifier=com.apple.cc_fips_test
Format=Mach-O thin (x86_64)
CodeDirectory v=20100 size=171 flags=0x0(none) hashes=3+2 location=embedded
Hash type=shal size=20
CDHash=addbd27b95abdfe4b3f5db7cde92d19224a0e856
Signature size=4097
Authority=Software Signing
Authority=Apple Code Signing Certification Authority
```

Authority=Apple Root CA Info.plist=not bound TeamIdentifier=not set Sealed Resources=none Internal requirements count=1 size=72

In the event the cc_fips_test tool had been modified in any form, the codesign verification would fail.

The result would be similar to:

```
/usr/libexec/cc_fips_test: object file format unrecognized, invalid, or
unsuitable
```

How to mitigate a crypto module integrity issue

If a crypto module integrity issue has been identified in the /var/log/system.log by the Crypto Officer, then there is only one step that can be taken for remediation.

Reinstall OS X Yosemite v10.10

If there is an integrity issue found with the CoreCrypto module or the CoreCrypto Kernel module, it may not be appropriate to reinstall OS X Yosemite v10.10 until the Crypto Officer has effectively researched the integrity issues and any ramifications. After completing appropriate research, reinstalling OS X Yosemite v10.0 is the only corrective step that can be taken.

Information can also be found from the following Apple Support Knowledge Base Article.

OS X: Security certifications and validations

https://support.apple.com/en-us/HT201159

FIPS 140-2 Validated Algorithms

The CoreCrypto and CoreCrypto Kernel Modules are cryptographic libraries offering various cryptographic mechanisms to Apple frameworks. Algorithms from the two Apple cryptographic modules in OS X Yosemite v10.10 achieved **Cryptographic Algorithm Validation** under the <u>Cryptographic Algorithm Validation Program (CAVP)</u>.

Modes of Operation

The CoreCrypto and CoreCrypto Kernel Modules have an Approved and Non-Approved modes of operation. The Approved mode of operation is configured in the system by default and cannot be changed. If the device boots up successfully then CoreCrypto framework and CoreCrypto KEXT have passed all self-tests and are operating in the Approved mode.

The Approved security functions are listed in **Table 3: Approved Security Functions** of the Non-Proprietary Security Policy documents posted along with the module validation certificate under CMVP. The Security Policy document links can be found above in the *Developer Resources* section. Column four (Val. No.) lists the validation numbers obtained from NIST for successful validation testing of the implementation of the cryptographic algorithms on the platforms as shown in Table 2 under CAVP.

Any calls to the non-Approved security functions listed in **Table 4: Non-Approved Security Functions** of the **Non-Proprietary Security Policy** documents will cause the module to assume the non-Approved mode of operation. Operators of the modules are strongly advised to avoid calling the functions in Table 4. If the module is operating in the non-Approved mode, operators are strongly cautioned to not use any CSP's previously utilized in the Approved mode of operation.

Note in the Security Policy documents under Key / CSP Establishment that the module provides DHand ECDH-based key establishment services in the Approved mode. The module provides key establishment services in the Approved mode through the PBKDFv2 algorithm. The PBKDFv2 function is provided as a service and returns the key derived from the provided password to the caller. The caller shall observe all requirements and should consider all recommendations specified in SP800-132 with respect to the strength of the generated key, including the quality of the password, the quality of the salt as well as the number of iterations. The implementation of the PBKDFv2 function requires the user to provide this information.

Refer to <u>http://csrc.nist.gov/groups/STM/cavp/index.html</u> for the current standards, test requirements, and special abbreviations used.

To see the exhaustive list of all algorithms supported by the cryptographic modules, Crypto Officers are highly encouraged to obtain and read the Security Policy document for complete technical explanations on the CoreCrypto and CoreCrypto Kernel modules. Links are provided in the Developer and Crypto Officer Resources section above.

Suite B Cryptographic Algorithms

The CoreCrypto Module (User Space) does provide for the use of Suite B Cryptographic Algorithms as are called out on the NSA Suite B Cryptography web page. Those algorithms include AES (FIPS 197), ECDH (SP 800-56A), ECDSA (FIPS 186-4) and SHA-256/-384 (FIPS 180-4). For further information from NSA about Suite B Algorithms, refer to http://www.nsa.gov/ia/programs/suiteb_cryptography/.